ArangoDB MCP Server
ArangoDB MCP servers enable AI models to interact with ArangoDB databases, providing capabilities for document operations, graph queries, AQL queries, and multi-model data management.
Overview
The MCP ArangoDB Server bridges AI and databases by letting language models (LLMs) work directly with ArangoDB, a flexible multi-model database. It's part of the Model Context Protocol (MCP) system, providing a safe and standard way to connect AI with powerful database capabilities for documents, graphs, and complex data relationships.
Created by:
Developed by ravenwits
Key Features
Document & Graph Operations
Work seamlessly with documents, edges, and vertices for complex data relationships
Powerful AQL Queries
Execute complex ArangoDB Query Language (AQL) queries with optional parameterized bind variables
Database & Collection Management
Create, list, and manage collections with automatic document key generation
Backup & Data Export
Export all collections as JSON files for backup and migration purposes
Available Tools
Quick Reference
| Tool | Purpose | Category |
|---|---|---|
arango_query | Execute AQL queries with bind variables | Read |
arango_insert | Add documents to collections | Write |
arango_update | Modify existing documents | Write |
arango_remove | Delete documents from collections | Write |
arango_list_collections | List all collections in database | Discovery |
arango_create_collection | Create new document or edge collections | Administration |
arango_backup | Export collections as JSON files | Backup |
Detailed Usage
arango_query▶
Execute AQL (ArangoDB Query Language) queries with optional parameterized bind variables for secure and efficient database operations.
use_mcp_tool({
server_name: "arangodb",
tool_name: "arango_query",
arguments: {
aql: "FOR doc IN users FILTER doc.age > @minAge RETURN doc",
bindVars: {
minAge: 18
}
}
});
arango_insert▶
Insert documents into collections with automatic document key generation if not provided.
use_mcp_tool({
server_name: "arangodb",
tool_name: "arango_insert",
arguments: {
collection: "users",
document: {
name: "John Doe",
email: "john@example.com",
age: 30
}
}
});
Automatic Key Generation:
Document keys are automatically generated if not provided in the document
arango_update▶
Update existing documents in a collection by specifying the collection name and document key.
use_mcp_tool({
server_name: "arangodb",
tool_name: "arango_update",
arguments: {
collection: "users",
key: "doc_key_123",
document: {
age: 31,
email: "john.doe@example.com"
}
}
});
arango_remove▶
Delete documents from collections by collection name and document key.
use_mcp_tool({
server_name: "arangodb",
tool_name: "arango_remove",
arguments: {
collection: "users",
key: "doc_key_123"
}
});
arango_list_collections▶
List all collections in the connected database with metadata including names, IDs, and types.
use_mcp_tool({
server_name: "arangodb",
tool_name: "arango_list_collections",
arguments: {}
});
arango_create_collection▶
Create new document or edge collections in the database with configurable options.
use_mcp_tool({
server_name: "arangodb",
tool_name: "arango_create_collection",
arguments: {
collection: "products",
type: "document"
}
});
Collection Types:
Create either document collections (standard) or edge collections (for graph relationships)
arango_backup▶
Export all collections as JSON files for backup and data migration purposes.
use_mcp_tool({
server_name: "arangodb",
tool_name: "arango_backup",
arguments: {
outputDir: "/path/to/backup/directory"
}
});
Data Preservation:
Creates JSON files for each collection with all current data for safe backups and migrations
Installation
{
"mcpServers": {
"arangodb": {
"command": "npx",
"args": ["arango-server"],
"env": {
"ARANGO_URL": "http://localhost:8529",
"ARANGO_DB": "your_database",
"ARANGO_USERNAME": "root",
"ARANGO_PASSWORD": "your_password"
}
}
}
}
Default Port:
ArangoDB runs on port 8529 by default. Adjust ARANGO_URL if using a different port or remote server.
Common Use Cases
1. Document Management
Store and retrieve documents with AQL queries:
// Insert a new document
use_mcp_tool({
server_name: "arangodb",
tool_name: "arango_insert",
arguments: {
collection: "articles",
document: {
title: "Getting Started with ArangoDB",
content: "ArangoDB is a multi-model database...",
author: "John Doe",
published: true
}
}
});
2. Graph Relationships
Query complex relationships using graph traversal:
// Find all connected users
use_mcp_tool({
server_name: "arangodb",
tool_name: "arango_query",
arguments: {
aql: `
FOR vertex, edge, path IN 1..2 OUTBOUND @start GRAPH 'social_graph'
RETURN {vertex: vertex, path: path}
`,
bindVars: {
start: "users/user_123"
}
}
});
3. Data Analysis & Aggregation
Run aggregation queries on large datasets:
// Get user statistics
use_mcp_tool({
server_name: "arangodb",
tool_name: "arango_query",
arguments: {
aql: `
FOR doc IN users
COLLECT region = doc.region WITH COUNT INTO count
RETURN {region: region, users: count}
`
}
});
4. Bulk Data Operations
Perform bulk updates across collections:
// Update multiple documents matching criteria
use_mcp_tool({
server_name: "arangodb",
tool_name: "arango_query",
arguments: {
aql: `
FOR doc IN users
FILTER doc.status == @oldStatus
UPDATE doc WITH { status: @newStatus }
IN users
RETURN NEW
`,
bindVars: {
oldStatus: "inactive",
newStatus: "archived"
}
}
});
Environment Variables
Configure the ArangoDB MCP server with these environment variables:
- ARANGO_URL - ArangoDB server URL (e.g.,
http://localhost:8529) - ARANGO_DB - Target database name (e.g.,
my_database) - ARANGO_USERNAME - Database username (e.g.,
root) - ARANGO_PASSWORD - Database password
Development Only:
This tool is designed for local development environments. Connecting to production databases is discouraged due to security risks.
Sources
Related Articles
Sentry MCP Server
Sentry MCP servers enable AI models to interact with Sentry's error monitoring and performance tracking platform, providing capabilities for analyzing errors, tracking performance, and assisting in debugging applications.
Model Context Protocol (MCP): Open Standard for AI Integration
The Model Context Protocol (MCP) is an open standard enabling AI systems to connect with diverse data sources, tools, and services, eliminating custom integrations for seamless interaction.
Figma MCP Server
Figma MCP servers enable AI models to access Figma design files, extract components, retrieve design tokens, and automate design-to-code workflows for seamless developer handoff.